Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 796, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781863

RESUMO

Self-organization of cells is central to a variety of biological systems and physical concepts of condensed matter have proven instrumental in deciphering some of their properties. Here we show that microphase separation, long studied in polymeric materials and other inert systems, has a natural counterpart in living cells. When placed below a millimetric film of liquid nutritive medium, a quasi two-dimensional, high-density population of Dictyostelium discoideum cells spontaneously assembles into compact domains. Their typical size of 100 µm is governed by a balance between competing interactions: an adhesion acting as a short-range attraction and promoting aggregation, and an effective long-range repulsion stemming from aerotaxis in near anoxic condition. Experimental data, a simple model and cell-based simulations all support this scenario. Our findings establish a generic mechanism for self-organization of living cells and highlight oxygen regulation as an emergent organizing principle for biological matter.


Assuntos
Dictyostelium , Dictyostelium/fisiologia , Quimiotaxia/fisiologia
2.
Nat Commun ; 9(1): 696, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449564

RESUMO

A remarkable feature of active matter is the propensity to self-organize. One striking instance of this ability to generate spatial structures is the cluster phase, where clusters broadly distributed in size constantly move and evolve through particle exchange, breaking or merging. Here we propose an exhaustive description of the cluster dynamics in apolar active matter. Exploiting large statistics gathered on thousands of Janus colloids, we measure the aggregation and fragmentation rates and rationalize the resulting cluster size distribution and fluctuations. We also show that the motion of individual clusters is entirely consistent with a model positing random orientation of colloids. Our findings establish a simple, generic model of cluster phase, and pave the way for a thorough understanding of clustering in active matter.

3.
J Phys Condens Matter ; 27(1): 015007, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25425559

RESUMO

Thermal boundary conductance at a metal-dielectric interface is a quantity of prime importance for heat management at the nanoscale. While the boundary conductance is usually ascribed to the coupling between metal phonons and dielectric phonons, in this work we examine the influence of a direct coupling between the metal electrons and the dielectric phonons. The effect of electron-phonon processes is generally believed to be resistive and tends to decrease the overall thermal boundary conductance as compared to the phonon-phonon conductance σ(p). Here, we find that the effect of a direct electron-phonon interfacial coupling σ(e) is to enhance the effective thermal conductance between the metal and the dielectric. Resistive effects turn out to be important only for thin films of metals that have a low electron-phonon coupling strength. Two approaches are explored to reach these conclusions. First, we present an analytical solution of the two-temperature model to compute the effective conductance which accounts for all the relevant energy channels, as a function of σ(e), σ(p) and the electron-phonon coupling factor G. Second, we use numerical resolution to examine the influence of σ(e) on two realistic cases: a gold film on silicon or silica substrates. We point out the implications for the interpretation of time-resolved thermoreflectance experiments.

4.
Eur Phys J E Soft Matter ; 37(11): 114, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412824

RESUMO

We consider random walks that arise from the repetition of independent, statistically identical steps, whose nature may be arbitrary. Such unimodal motions appear in a variety of contexts, including particle propagation, cell motility, swimming of micro-organisms, animal motion and foraging strategies. Building on general frameworks, we focus on the case where step duration is exponentially distributed. We explore systematically unimodal processes whose steps are ballistic, diffusive, cyclic or governed by rotational diffusion, and give the exact propagator in Fourier-Laplace domain, from which the moments and the diffusion coefficient are obtained. We also address bimodal processes, where two kinds of step are taken in turn, and show that the mean square displacement, the quantity of prime importance in experiments, is simply related to those of unimodal motions.

5.
J Chem Phys ; 133(6): 064905, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20707589

RESUMO

We present a coarse grain representation for Gaussian chains in the presence of hard surfaces. Whereas a Gaussian chain in the bulk can be represented by a bead-spring model with a quadratic potential between adjacent beads, the presence of a surface reduces the number of allowed chain configurations and modifies the effective potential between the beads. We derive the corrected potentials for several surface geometries: a single wall, two parallel walls (slit), and a spherical or cylindrical object (nanoparticle). Those potentials can be used in any model that includes a Gaussian chain, regardless of the simulation method. As an illustration, we consider a coarse grain model of a polymeric melt and, using Monte Carlo simulations, we compute the density profiles for (i) a melt confined in a slit and (ii) a melt in the vicinity of a nanoparticle. The case of a polymeric solution confined within a slit is also addressed, and the proposed approach is shown to yield results in qualitative agreement with those obtained with field-theoretic simulations.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 1): 041511, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711813

RESUMO

We present a numerical study of the structural correlations associated with gas adsorption and desorption in silica aerogels in order to provide a theoretical interpretation of scattering experiments. Following our earlier work, we use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis. We focus on the differences between the adsorption and desorption mechanisms and their signature in the fluid-fluid and gel-fluid structure factors as a function of temperature. At low temperature, but still in the regime where the isotherms are continuous, we find that the adsorbed fluid density, during both filling and draining, is correlated over distances that may be much larger than the gel correlation length. In particular, extended fractal correlations may occur during desorption, indicating the existence of a ramified cluster of vapor filled cavities. This also induces an important increase of the scattering intensity at small wave vectors. The similarity and differences with the scattering of fluids in other porous solids such as Vycor are discussed.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(5 Pt 1): 051506, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16383610

RESUMO

We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven random field Ising model at zero temperature.

8.
Langmuir ; 20(19): 8006-14, 2004 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-15350065

RESUMO

We present a theoretical study of the adsorption and desorption mechanisms of fluids in silica aerogels, focusing on the effect of temperature. We adopt a coarse-grained lattice description in which the gel structure is generated by a diffusion-limited cluster-cluster aggregation algorithm and the fluid configurations are computed using local mean-field (i.e., density functional) theory. Our calculations reproduce qualitatively the changes in the shape of the hysteresis loops observed with (4)He in gels of varying porosity. We study in detail the morphology of the condensation and evaporation events that correspond to the irreversible processes (avalanches) which are at the origin of the hysteresis. Depending on porosity and temperature, these avalanches may be localized, involve regions that extend beyond the gel correlation length, or even span the entire sample. This makes difficult the characterization of aerogels based on analyzing sorption isotherms.


Assuntos
Dióxido de Silício/química , Temperatura , Adsorção , Aerossóis/química , Gases/química , Propriedades de Superfície
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(6 Pt 1): 061504, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14754209

RESUMO

We apply local mean-field (i.e., density functional) theory to a lattice model of a fluid in contact with a dilute, disordered gel network. The gel structure is described by a diffusion-limited cluster aggregation model. We focus on the influence of porosity on both the hysteretic and the equilibrium behavior of the fluid as one varies the chemical potential at low temperature. We show that the shape of the hysteresis loop changes from smooth to rectangular as the porosity increases and that this change is associated with disorder-induced out-of-equilibrium phase transitions that differ in adsorption and in desorption. Our results provide insight in the behavior of 4He in silica aerogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...